Does NPY Play a Role in Maintaining The Weight Setpoint?

As regular readers of these posts are well aware, the Holy Grail of obesity is how to lower the body weight setpoint , which tends to reset to progressively higher weights with weight gain and then acts to “defend” against weight loss, virtually guaranteeing weight regain in the vast majority of people who try to lose weight. Now, a study by Yonwook Kim and Sheng Bi published in the American Journal of Physiology, shows that knocking down neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) can reverse the weight gain induced by a high-fat diet in rats. Following the induction of significant weight gain by feeding rats a high-fat diet (HFD), which not only increased body weight but also induces insulin resistance, the obese rats received bilateral DMH injections of an adenovirus vector that specifically knocked down NPY in this region of the brain. Not only did the NPY knockdown rats exhibit normal food intake and a reduced body weight, their glucose tolerance and insulin sensitivity also reverted to that seen in lean control rats, an effect that was maintained even over weeks of follow up. While these studies do not exactly prove the importance of NPY in the establishment or maintenance of the body weight “set point”, they do suggest that blocking NPY in the DMH (e.g. through an NPY inhibitor) may provide a potential target for the treatment of obesity and diabetes. @DrSharma Edmonton, AB

Full Post

Neuromodulation of the Prefrontal Cortex Can Reduce Energy Intake

Neuroimaging studies have implicated the  left dorsolateral prefrontal cortex (LDLPFC), an area of the brain that plays an important role in the organization and planning of behavior including goal-oriented regulation of eating behavior and food choice, has been implicated in obesity. Now Marci Gluck and colleagues, present a proof of concept study published in OBESITY, suggesting that effects of cathodal transcranial direct current stimulation (tDCS)aimed at the LDLPFC may reduce energy intake and promote weight loss in individuals with obesity. The randomised sham-controlled study was conducted in 9 (3m, 6f) healthy volunteers with obesity, who were admitted as inpatients for 9 days to a metabolic ward. In a first study, following 5 days of a weight-maintaining diet, participants received cathodal or sham tDCS (2 mA, 40 min) on three consecutive mornings and then ate ad libitum from a computerized vending machine, which recorded energy intake. In a second study participants repeated the 1st study, maintaining original assignment to active (this time anodal) and sham. In both studies, each stimulation session consisted of 40 min of anodal tDCS delivered with a neuroConn® DC-STIMULATOR device, at a constant current of 2  mA (with a 30-second ramp at on- and offset) using two 5 × 5 cm sponge electrodes soaked in a sterile 0.9% sodium chloride solution. Participants who received active tDCS consumed about 700 fewer total kilocalories per day during anodal versus cathodal stimulation. This reduction in caloric intake was mainly a result of reduced fat and pop consumption. In contrast, sham stimulation had no effect on energy intake. As may be expected in this short term study, not much happened to body weight. Regarding the mechanisms the authors speculate that, “Our results, in combination with previous work, point to a role for the LDLPFC in energy intake and body weight regulation. However, the mechanisms that mediate this association are not clear. Capacity for self-control in reward-related decision-making tasks depends critically on the activity of the DLPFC, a region that is activated in response to cues that induce food craving…. Thus, anodal tDCS over the LDLPFC could have reduced food intake by simultaneously suppressing food cravings and facilitating choices requiring delayed gratification.” As the authors optimistically conclude, “In this proof of principle clinical trial, participants with obesity receiving anodal versus cathodal tDCS to the LDLPFC tended to have lower ad libitum energy intake, less fat and soda intake, and significant differences in weight change. “ Obviously, it will take longer term studies as well as further… Read More »

Full Post

Transcriptional Control of Energy Regulation

To students of human physiology, the commonly held view that obesity is simply a matter of energy in and energy out is nothing short of laughable. Indeed, there are perhaps no other biological functions of more importance for survival of an organism, than those that regulate energy uptake, storage and expenditure – functions, without any form of life would be impossible. Thus, the finely tuned complex and often highly redundant pathways that have evolved to optimize energy metabolism have evolved to readily switch from states of feeding to starvation with shifts in substrate use (both qualitative and quantitative) – functions that are controlled by hundreds (if not thousands) of genes. Getting these genes to work in concert, requires a complex system of gene regulation, by which individual genes are switched on an off (to allow or stop protein synthesis) in various tissues to just the right amount at just the right time – a process known as transcriptional control. Now, a comprehensive review by Adelheid Lempradl and colleagues, published in Nature Genetics, summarizes the multitude of interlinked processes that control transcription of genes involved in energy homeostasis. As the authors explain, “Transcriptional control is the sum of the cellular events that select and dose gene transcription. In simple terms, these events converge on the regulation of gene locus accessibility and polymerase activity (including recruitment, pausing, processivity and termination).” “Energy homeostasis requires multi-layered regulation via dynamic, often periodic, expression of metabolic pathways to properly anticipate and respond to shifts in energy state.” “Transcription factors act by binding to specific regulatory DNA sequences, thus controlling the transcriptional output of defined target gene sets. They cooperate with co-regulators, which either promote (co-activators) or inhibit (co-repressors) transcription. Together, they build feedback networks and control the stability and responsiveness of energy homeostasis. Metabolic cells use receptors and metabolic machinery to generate specific signalling responses to endocrine inputs (for example, insulin, glucagon or leptin receptors) or metabolic inputs (for example, the primary energy metabolism machinery itself).” The papers goes on to discuss at length the various regulator, co-regulators and the plethora of epigenetic modifiers that determine how these factors do their job of activating or deactivating relevant genes throughout the body. Why is any of this important? “Rapid progress is currently being made in research on chromatin-based regulation of gene expression. Particular unknowns include the mechanisms that establish long-term set points or priming of gene expression. Identifying the processes that… Read More »

Full Post

The Biology Of The Food Coma

Feeling ready for a nap after a meal is part of normal human physiology – but how exactly does this happen? Now, Christophe Varin and colleagues from the Centre National de la Recherche Scientifique, Paris, France, in a paper published in the Journal of Neuroscience describe how glucose regulates key neurones in the brain to induce sleepiness. Their studies in mice focussed on sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO), critical in the induction and maintenance of slow-wave sleep (SWS). Using both in vivo and ex vivo patch clamp studies, the researchers show that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. As the researchers note, “The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status… Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the fundamental and intimate link between sleep and metabolism.” Apart from helping unravel the biology of a phenomenon that every parent of a young child is well aware of, this research raises a number of interesting clinical questions. Does overconsumption of high-sugar foods necessitate counteracting these effects with caffeine? Is this why sugar-sweetened pop generally contains caffeine (to not put you to sleep)? Does this also explain the practice of eating a bedtime snack to fight insomnia? And what does this mean for people with poorly controlled diabetes: do they need to drink more coffee than people without diabetes to get through their day? (not something I’ve heard of). Interesting stuff… @DrSharma Berlin, Germany

Full Post

Unravelling The Biology Of The Body Weight Set Point

Every dieter’s dilemma is the simple fact that our bodies can harness complex neurohormonal circuitry to counteract our volitional attempts at weight loss. Short of starving yourself, there is a limit to the amount of weight you can lose (everyone eventually hits a weight loss plateau) and keeping it off is a lifelong battle as the body strives to return its weight back to the “setpoint” (usually the highest weight you’ve ever been). But how exactly does this setpoint work and why can some people eat whatever they want – and even gain weight – without resetting to a higher weight? We don’t know the mechanism in humans, but a study by Dirk Luchtman working in William Colmer’s lab here at the University of Alberta, published in PLOS provides intriguing insights into how this works in rats. Their research used rats that were either sensitive or resistant to weight-gain induces by feeding them a high-energy diet (HED). Thus, they defined two groups of animals – those that fail to gain weight on HED (designated dietary resistant or DR) and those, who gain weight and then defend their higher body weight when put on a calorie-restricted diet (Defenders). In their series of elegant experiments, the researchers were able to clearly show that even after prolonged exposure to a calorie-restricted diet, neurohormonal changes (such as the  GABA inputs to PVN neurons) in the Defenders maintained highly attenuated responses to hunger reducing signals (e.g. MTII) compared to diet resistant (DR) or normal weight rats. This diminished response was only restored to “normal” after the Defenders regained the lost weight. Thus, the authors note that, “The loss of melanocortin sensitivity restricted to PVN of Defender animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.”   Clearly, further understanding exactly why some animals (or people) find it easier to gain and maintain (defend) their higher weight is one of the key areas of interest in finding solutions to better prevent and treat obesity. At least this much is clear – the reason why most rats (and people) fail at permanently losing excess weight is because of these complex neurohormonal mechanisms that will go to great lengths to ensure that you will… Read More »

Full Post