Follow me on

Developing A Research Agenda In Weight Bias

sharma-obesity-weight-bias-conduit1Last year, the Canadian Obesity Network and the Werklund School of Education and departments of Psychology and Community Health Sciences at the University of Calgary co-hosted the 2nd Canadian Summit on Weight Bias and Discrimination in Calgary, AB.

The proceedings of this two-day summit, which was attended by 40 invitees representing education, healthcare, and public policy sectors in Alberta, British Columbia, and Ontario are now published in OBESITY.

The 40 attendees included 14 researchers, 11 practitioners, and 15 policy makers, although some participants represented multiple perspectives.

On the first day, speakers from across Canada presented their research on the prevalence and consequences of weight bias, as well as on interventions to reduce weight bias in the education, healthcare, and public policy arenas.

These daytime sessions concluded with an evening public outreach event in the form of an expert round table titled “Fear of Fat: Promoting health in a fat phobic culture” at a local community center with 100 attendees.

The second day consisted of a round table of facilitated discussions to identify what research question(s), if answered, would make the greatest impact on weight bias reduction efforts in Canada.

The key outcome from these deliberations include the identification of six research areas that warrant further investigation in weight bias: costs, causes, measurement, qualitative research and lived experience, interventions, and learning from other models of discrimination.

It also became evident that progress in this field requires attention to three key issues: language matters, the voices of people living with obesity should be incorporated, and interdisciplinary stakeholders should be included.

A 3rd Summit on Weight Bias and Discrimination that will build on the learning form the previous workshop will be held in Edmonton, May 26-27, 2016.

It will be interesting to see what progress has been made in field since the last meeting in 2015.

@DrSharma
Edmonton, AB

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Comments

Hands-On Obesity Training in The Bariatric Simulation Suite, Edmonton, May 24, 2016

bariatric patient in bedLater this month, the Canadian Obesity Network, in partnership with the University of Alberta’s Health Sciences Education and Research Commons, will once again be offering its one-day, intensive hands-on Obesity Certification Program for health professionals.

As on previous occasions, this course offers an immersive educational experience on practical aspects of obesity management and the role of interprofessional bariatric care.

The practical course provides a hands-on  learning experience with standardised patients and includes experiential learning  in challenges people living with obesity face in their home and clinical settings.

These include exercises in the Bariatric Speciality Care Suite and Smart Condo.

Group size is limited, but a few spots remain.

More information is available here.

@DrSharma
Vancouver, BC

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Comments

The Edmonton Obesity Staging System for Pediatrics

Edmonton Obesity Staging System - Pediatrics (EOSS-P)

Edmonton Obesity Staging System – Pediatrics (EOSS-P)

Regular readers are by now familiar with the Edmonton Obesity Staging System (EOSS), that classifies individuals with obesity based on its impact on physical, mental and functional health.

Now, Stasia Hadjiyannakis and colleagues present an adaptation of EOSS for kids, published in Pediatrics and Child Health.

The evidence-informed paediatric clinical obesity staging system (EOSS-P), builds on EOSS for adults and captures the severity of disease, as well as factors that complicate management, within four domains of health most commonly encountered in obesity:

The EOSS-P assesses four main domains that are impacted by obesity and can impact responsiveness to weight management – metabolic, mechanical, mental, milieu:

Metabolic

Metabolic complications of paediatric obesity include glucose dysregulation (including type 2 diabetes [T2D]), dyslipidemia, the metabolic syndrome, nonalcoholic fatty liver disease, hypertension and, in adolescent females, polycystic ovary syndrome. Metabolic complications are often asymptomatic and must be screened for to be identified. Screening should begin at two years of age for lipid disorders, three years of age for hypertension and at 10 years of age or at the onset of puberty, if this occurs earlier, for diabetes. Metabolic complications of obesity can improve significantly through changes in health behaviour with minimal change in BMI.

Mechanical

Biomechanical complications of paediatric obesity include sleep apnea, sleep disordered breathing, gastroesophageal reflux disease, and musculoskeletal pain and dysfunction. The presence of sleep apnea and/or sleep disordered breathing can exacerbate the metabolic complications of obesity, have deleterious neurobehavioural effects, and affect appetite and food intake. Biomechanical complications can be barriers to weight management and affect prognosis. If left inadequately treated, biomechanical complications of obesity can promote further weight gain.

Mental health

Children and youth with obesity are at risk for social isolation and stigmatization. Childhood psychiatric disorders (eg, depression, anxiety), school difficulties, body dissatisfaction, dysregulated eating behaviours, teasing and bullying have all been linked to paediatric obesity. Children and youth with obesity have consistently reported lower health-related quality of life compared with normative samples. Mental health disorders, as well as some of the pharmacotherapeutic agents that are used to manage them, can complicate weight management, promote weight gain and affect prognosis.

Social milieu

An assessment of the family, school and neighbourhood milieus (the social milieu) is unique to the paediatric staging system and is important given the key role that parents, family members, schools and communities/neighbourhoods play in the health and wellbeing of children and youth. School difficulties and family factors, such as poor parental health, maternal depression, poor family functioning, receipt of social assistance, lack of emotional support, single parenthood and maternal drug use, have been associated with childhood obesity. Exposure to greater levels of psychosocial stress has been associated with higher levels of self-reported illness and negative health outcomes. Parental involvement and support are integral to successful paediatric obesity management.

The EOSS-P can be applied to children with obesity who are ≥2 years of age. The staging system is a tool reliant on clinician ratings, which are based on common clinical assessments including medical history, clinical examination and routine investigations. The EOSS-P is based on the presence and degree of the 4Ms with four stages of increasing health risk severity (0, 1, 2 and 3). The 4Ms are distinct categories, and progression in one of the categories does not necessarily coincide with a concomitant increase in the others. Individuals are assigned the highest stage in which they present with any metabolic, mechanical, mental health or social milieu risk factors.

As the authors note,

“This assessment tool can help support improved clinical and administrative decisions regarding the allocation of resources (ie, human, financial, time) for obesity management, and provide a platform for future research and clinical care designed to individualize therapeutic options.”

I have little doubt that clinicians will welcome this adaptation of EOSS for pediatric care as enthusiastically as they have welcomed the adult version of EOSS.

@DrSharma
Vancouver, BC

VN:F [1.9.22_1171]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

Comments

Welcome To The International Congress on Obesity, Vancouver 2016

ICO2016This weekend sees the start of the XIII International Congress on Obesity (ICO), hosted by the World Obesity Federation in partnership with the Canadian Obesity Network (CON) in Vancouver, Canada.

As this year’s Congress President, together with World Obesity Federation President Dr. Walmir Coutinho, it will be our pleasure to welcome delegates from around the world to what I am certain will be a most exciting and memorable event in one of the world’s most beautiful and livable cities.

The program committee, under the excellent leadership of Dr. Paul Trayhurn, has assembled a broad and stimulating program featuring the latest in obesity research ranging from basic science to prevention and management.

I can also attest to the fact that the committed staff both at the World Obesity Federation and the Canadian Obesity Network have put in countless hours to ensure that delegates have a smooth and stimulating conference.

The scientific program is divided into six tracks:

Track 1: From genes to cells

  • For example: genetics, metagenomics, epigenetics, regulation of mRNA and non–coding RNA, inflammation, lipids, mitochondria and cellular organelles, stem cells, signal transduction, white, brite and brown adipocytes

Track 2: From cells to integrative biology

  • For example: neurobiology, appetite and feeding, energy balance, thermogenesis, inflammation and immunity, adipokines, hormones, circadian rhythms, crosstalk, nutrient sensing, signal transduction, tissue plasticity, fetal programming, metabolism, gut microbiome

Track 3: Determinants, assessments and consequences

  • For example: assessment and measurement issues, nutrition, physical activity, modifiable risk behaviours, sleep, DoHAD, gut microbiome, Healthy obese, gender differences, biomarkers, body composition, fat distribution, diabetes, cancer, NAFLD, OSA, cardiovascular disease, osteoarthritis, mental health, stigma

Track 4: Clinical management

  • For example: diet, exercise, behaviour therapies, psychology, sleep, VLEDs, pharmacotherapy, multidisciplinary therapy, bariatric surgery, new devices, e-technology, biomarkers, cost effectiveness, health services delivery, equity, personalised medicine

Track 5: Populations and population health

  • For example: equity, pre natal and early nutrition, epidemiology, inequalities, marketing, workplace, school, role of industry, social determinants, population assessments, regional and ethnic differences, built environment, food environment, economics

Track 6: Actions, interventions and policies

  • For example: health promotion, primary prevention, interventions in different settings, health systems and services, e-technology, marketing, economics (pricing, taxation, distribution, subsidy), environmental issues, government actions, stakeholder and industry issues, ethical issues

I look forward to welcoming my friends and colleagues from around the world to what will be a very busy couple of days.

For more information on the International Congress on Obesity click here

For more information on the World Obesity Federation click here

For more information on the Canadian Obesity Network click here

@DrSharma
Edmonton, AB

VN:F [1.9.22_1171]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Comments

How To Interpret Studies On Screen Time And Eating Behaviour

sharma-obesity-kids-watching-tvMuch of the research on the contribution of screen time, sedentariness, food consumption and other factors comes from cross-sectional or longitudinal studies, where researchers essentially describe correlations and statistical “effect sizes”.

To be at all meaningful, analyses in such studies need to be adjusted for known (or at least likely) confounders (or at least the confounders that happen to available).

No matter how you turn and wind the data, such studies by definition cannot prove causality or (even less likely) predict the outcome of actual intervention studies.

Nevertheless, such studies can be helpful in generating hypotheses.

Thus, for example, I read with interest the recent paper by Lei Shang and colleagues from the University of Laval, Quebec, Canada, published in Preventive Medicine Reports.

The researchers looked at cross-sectional data on 630 Canadian children aged 8-10 years with at least one obese biological parent.

While the overall median daily screen time was about 2.2 hours, longer screen time was associated with higher intake of energy (74 kcal) and lower intake of vegetables & fruit (- 0.3 serving/1000 kcal).

This unhealthy “effect” of screen time on diet appeared even stronger among children with overweight.

Thus, there is no doubt that the study shows that,

“Screen time is associated with less desirable food choices, particularly in overweight children.”

The question of course remains whether or not this relationship is actual causal or in other words, does watching more television lead to an unhealthier diet (I am guessing no one assumes that eating an unhealthier diet leads to more TV watching).

Unfortunately, this is not a question that can be answered by this type of research.

Nor, is this type of research likely to predict whether or not reducing screen time will get the kids to eat better.

Indeed, it doesn’t take a lot of imagination to come up with other explanations for these findings that would not require any assumption of a causal link between eating behaviours and television watching.

For one, TV watching could simply be a surrogate measure for parenting style – perhaps parents that let their kids watch a lot of TV are also less concerned about the food they eat.

And, for all we know, reducing TV time may (e.g. by cutting the kids off from TV – or cutting the parents off from a convenient babysitter) in the end make the kids eating behaviours even worse.

Who knows – that’s exactly the point – who knows?

To be fair, the authors are entirely aware of the limitations of such studies:

“This study was cross-sectional, so no causal inference could be made and the possible mechanism is not clear. Although our data collection strictly followed the detailed manual procedure to guarantee the quality control (QUALITY Cohort Technical Documents, 2011), potential bias and errors may still exist in those self-reported questionnaires. A number of potential confounding factors have been adjusted in the regression models, but the results may still be confounded by other known and unknown factors.”

So, while the findings may well fit into the “narrative” of sedentariness -> unhealthy diets -> obesity, we must remain cautious in not overinterpreting findings from these type of studies or jumping to conclusions regarding policies or other interventions.

@DrSharma
Edmonton, AB

VN:F [1.9.22_1171]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

Comments
Blog Widget by LinkWithin