Follow me on

Non-Smokers Die of Lung Cancer and Teetotalers Die of Liver Cirrhosis

cause-effectIn all of my interactions with people who believe that the obesity epidemic is vastly overblown and that the links between excess body fat are imagined, I often hear the argument that obesity cannot “cause” [chose your health problem here] because “normal-weight” people can have [same health problem] too!

This is a rather naive argument, pretty much along the lines of, “Tobacco cannot cause lung cancer because non-smokers can get lung cancer too, or alcohol cannot cause liver cirrhosis because teetotalers get cirrhosis too”.

Or, “Drunk driving cannot cause road accidents, because non-drunk drivers get into accidents too”.

Or, “Flu vaccines don’t work, because vaccinated people get the flu too”.

I could go on….

What is missing in this perspective, is a very basic understanding of multiple cause and effect, as well as a fundamental understandings of probability and risk.

Firstly, almost all medical conditions can have more than one cause. Thus, although most lung cancer is by far attributable to smoking, it is also seen with exposure to asbestos, other environmental toxins, and of course sporadic mutagenesis.

Similarly, there are a multitude of reasons why someone may get liver cirrhosis, but, at least in Western societies, alcohol consumption is by far the number one cause of this problem.

And yes, some vaccinated people do catch the flu, but most vaccinated people don’t and when they do, it turns out to be less severe than it would have been without the vaccine.

So, just because “normal-weight” people can also have hypertension, diabetes, fatty liver disease, sleep apnea, osteoarthritis, gastroesophageal reflux, urinary incontinence, plantar fasciitis, and a host of other conditions, does not “prove” that excess weight does not also “cause” all of these conditions.

Yes, skinny people can have sleep apnea too but the overwhelmingly vast majority of sleep apnea is seen in people with excess weight – the same goes for virtually every obesity related health problem.

The other argument I often hear is that obesity cannot be the cause of [chose your health problem here] because not all people with obesity have [same health problem].

This argument is likewise stupid!

The fact that not every smoker dies of lung cancer, in no way “proves” that smoking does not cause cancer.

The fact that not everyone who regularly drinks a lot of alcohol gets a cirrhotic liver, does not disprove the link between alcohol and cirrhosis.

This is where we need to understand the basic concept of risk and probability.

When a certain factor (e.g. excess body fat) increases the risk of a certain condition, it does not mean that everyone exposed to that factor ends up with the condition. It just means that the risk for that condition is vastly higher.

Now let’s add a further level of complexity to the concept of risk, because, as we know, body fat is not body fat is not body fat is not body fat!

Whether or not my body fat actually causes any health problem, depends on a wide range of factors ranging from my underlying genetic predisposition (e.g. for diabetes, hypertension, etc.), my fat location (subcutaneous vs. ectopic), the cellular structure of my fat (hypertrophic vs. hyperplastic), fat-tissue inflammation, and probably countless other factors.

Add to this, that risk for obesity related conditions can be substantially modified by other factors including physical fitness, healthy diets, positive body image, good mental health – it is easy to understand why defining “sick” and “healthy” simply based on a measurement (direct or indirect) of body fat makes no sense.

Thus, we need to ensure that the medical term “obesity” is not used to label everyone above a certain (arbitrary) BMI cutoff.

Rather, we should reserve the medical term “obesity” only for the condition where excess or abnormal body fat directly impairs the health of a given individual (the actual WHO definition of obesity!).

Someone with the exact same amount of body fat (or even more), who does not experience any health impairment should not be referred to as having “obesity” – that person is just “fat” (a word that really needs to be destigmatised!).

Personally, I couldn’t care less about how “fat” anyone is. Only when “fat” becomes “obesity” does it become a medical issue.

@DrSharma
Edmonton, AB

Comments

5th Canadian Obesity Summit – Call For Abstracts And Workshops Now Open

banff-springs-hotelEvery two years the Canadian Obesity Network holds its National Obesity Summit – the only national obesity meeting in Canada covering all aspects of obesity – from basic and population science to prevention and health promotion to clinical management and health policy.

Anyone who has been to one of the past four Summits has experienced the cross-disciplinary networking and breaking down of silos (the Network takes networking very seriously).

Of all the scientific meetings I go to around the world, none has quite the informal and personal feel of the Canadian Obesity Summit – despite all differences in interests and backgrounds, everyone who attends is part of the same community – working on different pieces of the puzzle that only makes sense when it all fits together in the end.

The 5th Canadian Obesity Summit will be held at the Banff Springs Hotel in Banff National Park, a UNESCO World Heritage Site, located in the heart of the Canadian Rockies (which in itself should make it worth attending the summit), April 25-29, 2017.

Yesterday, the call went out for abstracts and workshops – the latter an opportunity for a wide range of special interest groups to meet and discuss their findings (the last Summit featured over 20 separate workshops – perhaps a tad too many, which is why the program committee will be far more selective this time around).

So here is what the program committee is looking for:

  • Basic science – cellular, molecular, physiological or neuronal related aspects of obesity
  • Epidemiology – epidemiological techniques/methods to address obesity related questions in populations studies
  • Prevention of obesity and health promotion interventions – research targeting different populations, settings, and intervention levels (e.g. community-based, school, workplace, health systems, and policy)
  • Weight bias and weight-based discrimination – including prevalence studies as well as interventions to reduce weight bias and weight-based discrimination; both qualitative and quantitative studies
  • Pregnancy and maternal health – studies across clinical, health services and population health themes
  • Childhood and adolescent obesity – research conducted with children and or adolescents and reports on the correlates, causes and consequences of pediatric obesity as well as interventions for treatment and prevention.
  • Obesity in adults and older adults – prevalence studies and interventions to address obesity in these populations
  • Health services and policy research – reaserch addressing issues related to obesity management services which idenitfy the most effective ways to organize, manage, finance, and deliver high quality are, reduce medical errors or improve patient safety
  • Bariatric surgery – issues that are relevant to metabolic or weight loss surgery
  • Clinical management – clinical management of overweight and obesity across the life span (infants through to older adults) including interventions for prevention and treatment of obesity and weight-related comorbidities
  • Rehabilitation –  investigations that explore opportunities for engagement in meaningful and health-building occupations for people with obesity
  • Diversity – studies that are relevant to diverse or underrepresented populations
  • eHealth/mHealth – research that incorporates social media, internet and/or mobile devices in prevention and treatment
  • Cancer – research relevant to obesity and cancer

…..and of course anything else related to obesity.

Deadline for submission is October 24, 2016

To submit an abstract or workshop – click here

For more information on the 5th Canadian Obesity Summit – click here

For sponsorship opportunities – click here

Looking forward to seeing you in Banff next year!

@DrSharma
Edmonton, AB

Comments

Arguments For Calling Obesity A Disease #8: Can Reduce Stigma

sharma-obesity-hypothalamusNext, in this miniseries on arguments for and against calling obesity a disease, I turn to the issue of stigma.

One of the biggest arguments against calling obesity, is the fear that doing so can increase stigma against people living with obesity.

This is nonsense, because I do not think it is at all possible for anything to make stigma and the discrimination of people living with obesity worse than it already is.

If anything, calling obesity a disease (defined as excess or abnormal body fat that impairs your health), could well serve to reduce that stigma by changing the narrative around obesity.

The current narrative sees obesity largely as a matter of personal choice involving poor will power to control your diet and unwillingness to engage in even a modest amount of regular physical activity.

In contrast, the term ‘disease’ conjures up the notion of complex biology including genetics, epigenetics, neurohormonal dysregulation, environmental toxins, mental health issues and other factors including social determinants of health, that many will accept are beyond the simple control of the individual.

This is not to say that other diseases do not carry stigma. This has and remains the case for diseases ranging from HIV/AIDS to depression – but, the stigma surrounding these conditions has been vastly reduced by changing the narrative of these illnesses.

Today, we are more likely to think of depression (and other mental illnesses) as a problem related to “chemicals in the brain”, than something that people can pull out of with sheer motivation and will power.

Perhaps changing the public narrative around obesity, from simply a matter of motivation and will power, to one that invokes the complex sociopsychobiology that really underlies this disorder, will, over time, also help reduce the stigma of obesity.

Once we see obesity as something that can affect anyone (it can), for which we have no easy solutions (we don’t), and which often requires medical or surgical treatment (it does) best administered by trained and regulated health professionals (like for other diseases), we can perhaps start destigmatizing this condition and change the climate of shame and blame that people with this disease face everyday.

@DrSharma
Edmonton, AB

Comments

Arguments For Calling Obesity A Disease #2: It Is Driven By Biology

feastContinuing in my miniseries on reasons why obesity should be considered a disease, I turn to the idea that obesity is largely driven by biology (in which I include psychology, which is also ultimately biology).

This is something people dealing with mental illness discovered a long time ago – depression is “molecules in your brain” – well, so is obesity!

Let me explain.

Humans throughout evolutionary history, like all living creatures, were faced with a dilemma, namely to deal with wide variations in food availability over time (feast vs. famine).

Biologically, this means that they were driven in times of plenty to take up and store as many calories as they could in preparation for bad times – this is how our ancestors survived to this day.

While finding and eating food during times of plenty does not require much work or motivation, finding food during times of famine requires us to go to almost any length and risks to find food. This risk-taking behaviour is biologically ensured by tightly linking food intake to the hedonic reward system, which provides the strong intrinsic motivator to put in the work required to find foods and consume them beyond our immediate needs.

Indeed, it is this link between food and pleasure that explains why we would go to such lengths to further enhance the reward from food by converting raw ingredients into often complex dishes involving hours of toiling in the kitchen. Human culinary creativity knows no limits – all in the service of enhancing pleasure.

Thus, our bodies are perfectly geared towards these activities. When we don’t eat, a complex and powerful neurohormonal response takes over (aka hunger), till the urge becomes overwhelming and forces us to still our appetites by seeking, preparing and consuming foods – the hungrier we get, the more we seek and prepare foods to deliver even greater hedonic reward (fat, sugar, salt, spices).

The tight biological link between eating and the reward system also explains why we so often eat in response to emotions – anxiety, depression, boredom, happiness, fear, loneliness, stress, can all make us eat.

But eating is also engrained into our social behaviour (again largely driven by biology) – as we bond to our mothers through food, we bond to others through eating. Thus, eating has been part of virtually every celebration and social gathering for as long as anyone can remember. Food is celebration, bonding, culture, and identity – all features, the capacity for which, is deeply engrained into our biology.

In fact, our own biology perfectly explains why we have gone to such lengths to create the very environment that we currently live in. Our biology (paired with our species’ limitless creativity and ingenuity) has driven us to conquer famine (at least in most parts of the world) by creating an environment awash in highly palatable foods, nutrient content (and health) be damned!

Thus, even without delving any deeper into the complex genetics, epigenetics, or neuroendocrine biology of eating behaviours, it is not hard to understand why much of today’s obesity epidemic is simply the result of our natural behaviours (biology) acting in an unnatural environment.

So if most of obesity is the result of “normal” biology, how does obesity become a disease?

Because, even “normal” biology becomes a disease, when it affects health.

There are many instances of this.

For example, in the same manner that the biological system responsible for our eating behaviour and energy balance responds to an “abnormal” food environment  by promoting excessive weight gain to the point that it can negatively affect our health, other biological systems respond to abnormal environmental cues to affect their respective organ systems to produce illnesses.

Our immune systems designed to differentiate between “good” and “bad”, when underexposed to “good” at critical times in our development (thanks to our modern environments), treat it as “bad”, thereby creating debilitating and even fatal allergic responses to otherwise “harmless” substances like peanuts or strawberries.

Our “normal” glucose homeostasis system, when faced with insulin resistance (resulting from increasingly sedentary life circumstances), provoke hyperinsulinemia with ultimate failure of the beta-cell, resulting in diabetes.

Similarly, our “normal” biological responses to lack of sleep or constant stress, result in a wide range of mental and physical illnesses.

Our “normal” biological responses to drugs and alcohol can result in chronic drug and alcohol addiction.

Our “normal” biological response to cancerogenous substances (including sunlight) can result in cancers.

The list goes on.

Obviously, not everyone responds to the same environment in the same manner – thanks to biological variability (another important reason why our ancestors have made it through the ages).

But, you may argue, if obesity is largely the result of “normal” biology responding to an “abnormal” environment, then isn’t it really the environment that is causing the disease?

That may well be the case, but it doesn’t matter for the definition of disease. Many diseases are the result for the environment interacting with biology and yes, changing the environment could indeed be the best treatment (or even cure) for that disease.

Thus, even if pollution causes asthma and the ultimate “cure” for asthma is to rid the air of pollutants, asthma, while it exists, is still a disease for the person who has it.

All that counts is whether or not the biological condition at hand is affecting your health or not.

The only reason I bring up biology at all, is to counter the argument that obesity is simply stupid people making poor “choices” – one you consider the biology, nothing about obesity is “simple”.

@DrSharma
Edmonton, AB

Comments

Genetic Obesity In Labrador Retrievers

POMC dogsWhile much has been written on how the current obesity epidemic is not limited to humans but also includes house hold pets and zoo animals, some species appear to be more obesity prone than others.

Among dogs, which for centuries have been selectively bred to transform the wild type into all shapes, sizes and temperaments, some breeds likewise appear more prone to weight gain than others – these include labrador retrievers.

Now, a study by Eleanor Raffan and colleagues from Cambridge University, UK, in a paper published in Cell Metabolism, have identified a common deletion within the POMC gene that enhances appetite and feeding behaviour.

The 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12% disrupts the β-MSH and β-endorphin coding sequences and is associated with body weight (mean effect size 1.90 kg per deletion allele, equivalent to 0.33 SDs), adiposity, and greater food motivation.

Among another 39 dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food motivation.

The influence of this mutation on feeding behaviour is likely complex:

“It has been reported that owners of more highly food-motivated dogs make greater efforts to limit their dogs’ access to food. However, there is evidence to suggest dogs are able to influence both the type and quantity of food offered to them by their owners. It is possible that behavior changes related to the mutation are sufficient to lead to increased food intake (either by scavenging or soliciting owner-provided food).”

Interestingly, the mutation was found to be significantly more common in Labrador retrievers that had been selected to become assistance dogs than pets suggesting that there may be something about this deletion that positively influences temperament, making them best suited for this kind of work.

“Temperament and “trainability” are the main drivers for selection of assistance dogs, and “positive reinforcement” with food reward is a mainstay of puppy training. We therefore hypothesize that dogs carrying the POMC deletion may be more likely to be selected as assistance dogs.”

Overall, and this should come as no surprise, these findings show that mutations in the same system that regulates human weight and appetite (and perhaps temperament?) is found in obesity prone canines.

Which, incidentally, brings up the issue of selective breeding in humans – but that’s another story.

@DrSharma
Edmonton, AB

 

Comments