Follow me on

The Key To Obesity Management Lies In The Science Of Energy Homeostasis

If there is one thing we know for sure about obesity management, it is the sad fact, that no diet, exercise, medication, not even bariatric surgery, will permanently reset the body’s tendency to defend and regain its body weight to its set point – this generally being the highest weight that has been achieved and maintained for a notable length of time.

Thus, any effective long-term treatment has to offset the complex neurobiology that will eventually doom every weight-loss attempt to “failure” (no, anecdotes don’t count!).

Just how complex and overpowering this biological system that regulates body weight is, is described in a comprehensive review by the undisputed leaders in this field (Michael Schwartz, Randy Seeley, Eric Ravussin, Rudolph Leibel and colleagues) published in Endocrine Reviews. Indeed the paper is nothing less than a “Scientific Statement” from the venerable Endocrine Society, or, in other words, these folks know what they’re talking about when it comes to the science of energy balance.

As the authors remind us,

“In its third year of existence, the Endocrine Society elected Sir Harvey Cushing as President. In his presidential address, he advocated strongly in favor of adopting the scientific method and abandoning empiricism to better inform the diagnosis and treatment of endocrine disease. In doing so, Cushing helped to usher in the modern era of endocrinology and with it, the end of organo-therapy. (In an interesting historical footnote, Cushing’s Energy Homeostasis and the Physiological Control of Body-Fat Stores presidential address was given in , the same year that insulin was discovered.)”

Over 30 pages, backed by almost 350 scientific citations, the authors outline in excruciating detail just how complex the biological system that regulates, defends, and restores body weight actually is. Moreover, this system is not static but rather, is strongly influenced and modulated by environmental and societal factors.

Indeed, after reading this article, it seems that the very notion, that average Jane or Joe could somehow learn to permanently overcome this intricately fine-tuned system (or the societal drivers) with will power alone is almost laughable (hats off to the very few brave and determined individuals, who can actually do this – you have climbed to the top of Mount Everest and decided to camp out there for the foreseeable future – I wish you all the best!).

Thus, the authors are confident that,

“The identification of neuromolecular mechanisms that integrate short-term and long-term control of feeding behavior, such that calorie intake precisely matches energy expenditure over long time intervals, will almost certainly enable better preventive and therapeutic approaches to obesity.”

Sadly, despite all we have learnt about this system, we are still far from fully understanding it. Thus, the canonical molecular/ cellular signaling pathway: LEP → LEPR → POMC, AgRP → PC → MC4R is just one pathway in a complex network of multiple interacting and sometimes redundant pathways that involve virtually every part of the brain.

Also, the effect of environmental factors appears to be far more complex than most people think. Thus,

“During sensitive periods of development, ontogenic processes in both brain and peripheral organs can be modified so as to match anticipated environmental conditions. Although many exposures during development could potentially predispose to obesity in adulthood, we focus here on two that some researchers think contribute to the secular trends in obesity: parental obesity and exposure to endocrine disrupting chemicals (EDCs).”

Throw in the role of gut bugs, infections, and societal factors, and it is easy to see why no simple solution to the obesity epidemic are in sight (let alone a range of effective long-term treatments like we have for most other common chronic diseases).

As for solutions,

“To be viable, theories of obesity pathogenesis must account not only for how excess body fat is acquired, but also for how excess body fat comes to be biologically defended. To date, the preponderance of research has focused on the former. However, we must consider the possibility that some (perhaps even most) mechanisms underlying weight gain are distinct from those responsible for the biological defense of excess fat mass. A key question, therefore, is how the energy homeostasis system comes to defend an elevated level of fat mass (analogous to the defense of elevated blood pressure in patients with hypertension). Answering this question requires an improved understanding of the neuro-molecular elements that underlie a “defended” level of body fat. What are the molecular/neuroanatomic predicates that help establish and defend a “set point” for adiposity? How do these elements regulate feeding behavior and/or energy expenditure, so as to achieve long-term energy balance? By what mechanisms is an apparently higher set point established and defended in individuals who are obese?” [sic]


“Given that recovery of lost weight (the normal, physiological response to weight loss irrespective of one’s starting weight) is the largest single obstacle to effective long-term weight loss, we cannot overstate the importance of a coherent understanding of obesity-associated alterations of the energy homeostasis system.”

There is much work to be done. Whether or not, in this climate of anti- and pseudo-science, funding for such fundamental work will actually be made available, is anyone’s guess.

Edmonton, AB


Arguments For Calling Obesity A Disease #8: Can Reduce Stigma

sharma-obesity-hypothalamusNext, in this miniseries on arguments for and against calling obesity a disease, I turn to the issue of stigma.

One of the biggest arguments against calling obesity, is the fear that doing so can increase stigma against people living with obesity.

This is nonsense, because I do not think it is at all possible for anything to make stigma and the discrimination of people living with obesity worse than it already is.

If anything, calling obesity a disease (defined as excess or abnormal body fat that impairs your health), could well serve to reduce that stigma by changing the narrative around obesity.

The current narrative sees obesity largely as a matter of personal choice involving poor will power to control your diet and unwillingness to engage in even a modest amount of regular physical activity.

In contrast, the term ‘disease’ conjures up the notion of complex biology including genetics, epigenetics, neurohormonal dysregulation, environmental toxins, mental health issues and other factors including social determinants of health, that many will accept are beyond the simple control of the individual.

This is not to say that other diseases do not carry stigma. This has and remains the case for diseases ranging from HIV/AIDS to depression – but, the stigma surrounding these conditions has been vastly reduced by changing the narrative of these illnesses.

Today, we are more likely to think of depression (and other mental illnesses) as a problem related to “chemicals in the brain”, than something that people can pull out of with sheer motivation and will power.

Perhaps changing the public narrative around obesity, from simply a matter of motivation and will power, to one that invokes the complex sociopsychobiology that really underlies this disorder, will, over time, also help reduce the stigma of obesity.

Once we see obesity as something that can affect anyone (it can), for which we have no easy solutions (we don’t), and which often requires medical or surgical treatment (it does) best administered by trained and regulated health professionals (like for other diseases), we can perhaps start destigmatizing this condition and change the climate of shame and blame that people with this disease face everyday.

Edmonton, AB


Arguments For Calling Obesity A Disease #2: It Is Driven By Biology

feastContinuing in my miniseries on reasons why obesity should be considered a disease, I turn to the idea that obesity is largely driven by biology (in which I include psychology, which is also ultimately biology).

This is something people dealing with mental illness discovered a long time ago – depression is “molecules in your brain” – well, so is obesity!

Let me explain.

Humans throughout evolutionary history, like all living creatures, were faced with a dilemma, namely to deal with wide variations in food availability over time (feast vs. famine).

Biologically, this means that they were driven in times of plenty to take up and store as many calories as they could in preparation for bad times – this is how our ancestors survived to this day.

While finding and eating food during times of plenty does not require much work or motivation, finding food during times of famine requires us to go to almost any length and risks to find food. This risk-taking behaviour is biologically ensured by tightly linking food intake to the hedonic reward system, which provides the strong intrinsic motivator to put in the work required to find foods and consume them beyond our immediate needs.

Indeed, it is this link between food and pleasure that explains why we would go to such lengths to further enhance the reward from food by converting raw ingredients into often complex dishes involving hours of toiling in the kitchen. Human culinary creativity knows no limits – all in the service of enhancing pleasure.

Thus, our bodies are perfectly geared towards these activities. When we don’t eat, a complex and powerful neurohormonal response takes over (aka hunger), till the urge becomes overwhelming and forces us to still our appetites by seeking, preparing and consuming foods – the hungrier we get, the more we seek and prepare foods to deliver even greater hedonic reward (fat, sugar, salt, spices).

The tight biological link between eating and the reward system also explains why we so often eat in response to emotions – anxiety, depression, boredom, happiness, fear, loneliness, stress, can all make us eat.

But eating is also engrained into our social behaviour (again largely driven by biology) – as we bond to our mothers through food, we bond to others through eating. Thus, eating has been part of virtually every celebration and social gathering for as long as anyone can remember. Food is celebration, bonding, culture, and identity – all features, the capacity for which, is deeply engrained into our biology.

In fact, our own biology perfectly explains why we have gone to such lengths to create the very environment that we currently live in. Our biology (paired with our species’ limitless creativity and ingenuity) has driven us to conquer famine (at least in most parts of the world) by creating an environment awash in highly palatable foods, nutrient content (and health) be damned!

Thus, even without delving any deeper into the complex genetics, epigenetics, or neuroendocrine biology of eating behaviours, it is not hard to understand why much of today’s obesity epidemic is simply the result of our natural behaviours (biology) acting in an unnatural environment.

So if most of obesity is the result of “normal” biology, how does obesity become a disease?

Because, even “normal” biology becomes a disease, when it affects health.

There are many instances of this.

For example, in the same manner that the biological system responsible for our eating behaviour and energy balance responds to an “abnormal” food environment  by promoting excessive weight gain to the point that it can negatively affect our health, other biological systems respond to abnormal environmental cues to affect their respective organ systems to produce illnesses.

Our immune systems designed to differentiate between “good” and “bad”, when underexposed to “good” at critical times in our development (thanks to our modern environments), treat it as “bad”, thereby creating debilitating and even fatal allergic responses to otherwise “harmless” substances like peanuts or strawberries.

Our “normal” glucose homeostasis system, when faced with insulin resistance (resulting from increasingly sedentary life circumstances), provoke hyperinsulinemia with ultimate failure of the beta-cell, resulting in diabetes.

Similarly, our “normal” biological responses to lack of sleep or constant stress, result in a wide range of mental and physical illnesses.

Our “normal” biological responses to drugs and alcohol can result in chronic drug and alcohol addiction.

Our “normal” biological response to cancerogenous substances (including sunlight) can result in cancers.

The list goes on.

Obviously, not everyone responds to the same environment in the same manner – thanks to biological variability (another important reason why our ancestors have made it through the ages).

But, you may argue, if obesity is largely the result of “normal” biology responding to an “abnormal” environment, then isn’t it really the environment that is causing the disease?

That may well be the case, but it doesn’t matter for the definition of disease. Many diseases are the result for the environment interacting with biology and yes, changing the environment could indeed be the best treatment (or even cure) for that disease.

Thus, even if pollution causes asthma and the ultimate “cure” for asthma is to rid the air of pollutants, asthma, while it exists, is still a disease for the person who has it.

All that counts is whether or not the biological condition at hand is affecting your health or not.

The only reason I bring up biology at all, is to counter the argument that obesity is simply stupid people making poor “choices” – one you consider the biology, nothing about obesity is “simple”.

Edmonton, AB


Genetic Obesity In Labrador Retrievers

POMC dogsWhile much has been written on how the current obesity epidemic is not limited to humans but also includes house hold pets and zoo animals, some species appear to be more obesity prone than others.

Among dogs, which for centuries have been selectively bred to transform the wild type into all shapes, sizes and temperaments, some breeds likewise appear more prone to weight gain than others – these include labrador retrievers.

Now, a study by Eleanor Raffan and colleagues from Cambridge University, UK, in a paper published in Cell Metabolism, have identified a common deletion within the POMC gene that enhances appetite and feeding behaviour.

The 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12% disrupts the β-MSH and β-endorphin coding sequences and is associated with body weight (mean effect size 1.90 kg per deletion allele, equivalent to 0.33 SDs), adiposity, and greater food motivation.

Among another 39 dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food motivation.

The influence of this mutation on feeding behaviour is likely complex:

“It has been reported that owners of more highly food-motivated dogs make greater efforts to limit their dogs’ access to food. However, there is evidence to suggest dogs are able to influence both the type and quantity of food offered to them by their owners. It is possible that behavior changes related to the mutation are sufficient to lead to increased food intake (either by scavenging or soliciting owner-provided food).”

Interestingly, the mutation was found to be significantly more common in Labrador retrievers that had been selected to become assistance dogs than pets suggesting that there may be something about this deletion that positively influences temperament, making them best suited for this kind of work.

“Temperament and “trainability” are the main drivers for selection of assistance dogs, and “positive reinforcement” with food reward is a mainstay of puppy training. We therefore hypothesize that dogs carrying the POMC deletion may be more likely to be selected as assistance dogs.”

Overall, and this should come as no surprise, these findings show that mutations in the same system that regulates human weight and appetite (and perhaps temperament?) is found in obesity prone canines.

Which, incidentally, brings up the issue of selective breeding in humans – but that’s another story.

Edmonton, AB



Welcome To The International Congress on Obesity, Vancouver 2016

ICO2016This weekend sees the start of the XIII International Congress on Obesity (ICO), hosted by the World Obesity Federation in partnership with the Canadian Obesity Network (CON) in Vancouver, Canada.

As this year’s Congress President, together with World Obesity Federation President Dr. Walmir Coutinho, it will be our pleasure to welcome delegates from around the world to what I am certain will be a most exciting and memorable event in one of the world’s most beautiful and livable cities.

The program committee, under the excellent leadership of Dr. Paul Trayhurn, has assembled a broad and stimulating program featuring the latest in obesity research ranging from basic science to prevention and management.

I can also attest to the fact that the committed staff both at the World Obesity Federation and the Canadian Obesity Network have put in countless hours to ensure that delegates have a smooth and stimulating conference.

The scientific program is divided into six tracks:

Track 1: From genes to cells

  • For example: genetics, metagenomics, epigenetics, regulation of mRNA and non–coding RNA, inflammation, lipids, mitochondria and cellular organelles, stem cells, signal transduction, white, brite and brown adipocytes

Track 2: From cells to integrative biology

  • For example: neurobiology, appetite and feeding, energy balance, thermogenesis, inflammation and immunity, adipokines, hormones, circadian rhythms, crosstalk, nutrient sensing, signal transduction, tissue plasticity, fetal programming, metabolism, gut microbiome

Track 3: Determinants, assessments and consequences

  • For example: assessment and measurement issues, nutrition, physical activity, modifiable risk behaviours, sleep, DoHAD, gut microbiome, Healthy obese, gender differences, biomarkers, body composition, fat distribution, diabetes, cancer, NAFLD, OSA, cardiovascular disease, osteoarthritis, mental health, stigma

Track 4: Clinical management

  • For example: diet, exercise, behaviour therapies, psychology, sleep, VLEDs, pharmacotherapy, multidisciplinary therapy, bariatric surgery, new devices, e-technology, biomarkers, cost effectiveness, health services delivery, equity, personalised medicine

Track 5: Populations and population health

  • For example: equity, pre natal and early nutrition, epidemiology, inequalities, marketing, workplace, school, role of industry, social determinants, population assessments, regional and ethnic differences, built environment, food environment, economics

Track 6: Actions, interventions and policies

  • For example: health promotion, primary prevention, interventions in different settings, health systems and services, e-technology, marketing, economics (pricing, taxation, distribution, subsidy), environmental issues, government actions, stakeholder and industry issues, ethical issues

I look forward to welcoming my friends and colleagues from around the world to what will be a very busy couple of days.

For more information on the International Congress on Obesity click here

For more information on the World Obesity Federation click here

For more information on the Canadian Obesity Network click here

Edmonton, AB